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ABSTRACT

In this rescarch a Collaborative Optimization (CO) approach
for multidisciplinary systems design is uscd to develop a
decision based design framework for non-deterministic
optimization. To date CO strategies have been developed for use
in application to deterministic systems design problems. In this
rescarch the decision based design (DBD) framework proposed
by Hazelrigg (1996a, 1998) is modified for usc in a
collaborative  optimization  framework. The  Hazelrigg
framework as originally proposed provides a single level
optimization strategy that combines cnginecring decisions with
business deccisions in a single level optinization. By
transforming this framework for use in  collaborative
optimization one can decomposc the business and engincering
decision making processes. In the new multilevel framework of
Decision Based Collaborative  Optimization (DBCO) the
business decisions are made at the system level. These business
decisions result in a set of engineering performance targets that
disciplinary engineering design teams scek to satisfy as part of
subspace optimizations. The Decision Based Collaborative
Optimization framework more accuratcly models the existing
rclationship  between  business  and  engincering  in
multidisciplinary systems design.

NOMENCLATURE

Cp fixed cost

O total cost

a unit cost

I variable cost

E(?) expected value

F objective function in optimization problem
NR net revenue

° price

PNR present value of net revenue

a vector of attributes

by demand cocflicient for attribute ¢

C price demand coefficient for price

d vector of compatibility (or discrepancy) constraints
d, compatibility constraint in discipline i

g vector of constraints

g vector of constraints in discipline

)
'COSI

number of cost-related variables

number of attributcs



n number of subspaces (disciplines)

P vector of parameters

(p,). variable cost parameter associated with cost-related
V7

variable i

q demand

gz baseline demand
utility
vector of design variables

Xpux vector of auxiliary design vanables

(xuu‘,)” vector of auxiliary design variables corresponding to
Yy

X, vector of local design variables for discipline /

X vector of shared design variables

(x,,), vector of shared design variables used in discipline i
x vector of subspace design variables in discipline i
(x,,); vector of optimal target values in discipline i

x vector of system level design variables

vector of targets (i.e., system level design variables)

sent down to discipline

y vector of state variables

¥ vector of state variables calculated as output from
discipline ¢

Vi vector of coupling variables calculated as output from

discipline i and used as input to discipline j

(7 system level target variable
(?). variable at the optimum design
INTRODUCTION

Increasing attention has been paid to the notion that
engineering design is a decision-making process (Chen, ct.
al, 1998, 2000, Kim, ct. al, 2000, Azarm, 2000). This notion Is
consistent with the definition of decision as a choice from
among a sct of options and as an irrevocable allocation of
resources. The approach of decision-based design (DBD) is
built upon this notion. Rooted from more than two hundred
years of rescarch in the field of decision science, cconomics,
operations rescarch and other disciplines, decision-based design
(DBD) provides a rigorous foundation for design, which enables
engineers to identify the best trade-off and focus on where the
payoffs arc grcatest.

Engineering design involves the gencration of design
alternatives or options and the sclection of the best one. Since
the number of possible design options is practically infinite for
most products, human judgement is nceded to decide which
options to include in the consideration of alternative designs and
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which to neglect. Moreover an appropriate value measure has to
be determined in order to compare and rank order design
options. It is impossible to know exactly how a particular design
alternative will perform before it is built. However the product
cannot be built until it is selected. Evidently engineers have to
make their selection a priori, without full knowledge of the
consequence of this certain selection. Thus design 1s always a
matter of normative decision making under uncertainty and risk.

Optimization techniques have been widely applied to select
:he preferred design options from the set of alternatives taken
mto consideration without having to explicitly evaluate all
possible alternatives in the set. There exists a close relationship
hetween decision making and optimization. In general, decision
making has threc elements: gencration or identification of
cptions, assignment of expectations on cach option and the
application of preferences to determine the preferred choice. An
optimization  problem involves the maximization or
minimization of an objective function or functional F(x) in the
‘easible region of design variables x. A careful comparison
between decision making and optimization will reveal that
sptions, expectations and preferences are all present in
sptimization. The option space is equivalent to the set of
sermissible values of x in the feasible region. The expectation
of any given x is assigned by F(x), and the preference is stated
that more is better (maximization) or less is better
{minimization). Thus optimization can be used to capture the
nroperties of decision-making. This recognition allows the
application of rigorous decision theory to the case of
optimization.

DECISION-BASED DESIGN (DBD) FRAMEWORK

Application of decision-based design within an optimization
domain, requires practitioners to formulate valid objective
functions for proper decision-making. Most of the rescarch in
the ficld of optimization has been focused on the solution of the
optimization problem such as development, improvement and
implementation of scarch methods to locate the optimum, while
little attention has been paid to optimization problem
formulation. In fact, the issue of problem formulation is of the
same significance, if not more, as the issuc of finding the
optimal solution. An solution obtained using any search method
is no better than the objective function chosen for the
optimization. If an irrelevant objective is used, the solution is
equally irrclevant (Hazelrigg 1996a, 1997). Therefore a primary
concern in DBD is the development a mathematically sound
objective function. Recognizing that design is a decision-
making process, it is imperative to construct an objective
function which is able to capture the preferences of rational
decision makers in system design problems involving risk. The
decision-based design (DBD) framework of Hazelrigg 1996a,
1998 (Fig. 1) provides a basis for exploring this issue.



The Rule of Rational Decisions

The aforementioned decision-based design  framework
implements the concept of rational decisions. Rational decisions
follow the rule that the preferred decision 1s the option whose
cxpectation has the highest value. In a normative approach,
decisions involve options, ecxpectations and values. An
expectation combines the possible outcomes of an altecrnative
with probabilities of occurrence of each possible outcome. Note
that in gencral expectations arc not cquivalent to outcomes. An
outcome refers to what actually happens after a decision is made
to select a certain option, while an expectation refers to what is
expected to happen, based on available knowledge, as the result
of a decision before the decision is made. In other words
expectations are associated with what will happen, therefore,
expectations relate to the future. In the process of engineering
design, it is practically impossible to predict the future with
precision and certainty. The outcomes of most options in the
design option space cannot be determined with certainty prior to
the decision to select one option. Hence expectations are always
probabilistic. Engincers are forced to make decisions under
uncertainty and risk.

Unlike problem-solving, decision-making cannot be
conducted in the absence of human values. The purpose of
values in decision making is to rank order altcrnatives according
to the preference of decision makers. In the case of
optimization, cngincers seck a design which maximizes value,
and the objective function serves as a numerical valuc function
to automate the process of rank ordering. By mecans of an
objective function, a real scalar is assigned to cach design
alternative in accordance with the decision maker’s preference.
In this sense an objective function serves as a utility function in
the context of economics. Note that utilitics are determined by

nreferences and so is the objective function. A necessary
condition for the existence of an objective function in decision-
based design 1s that decision makers or design engincers are
rational individuals whose preferences and indifferences
between all pairs of outcomes in the design space cxists and
comprises a transitive set.

Decision Making/Optimization Under Uncertainty

Duc to the nature of engineering design, expectations on
design alternatives can ncver be determined with certainty.
Particular care should be taken in the formulation of an
objective function when risk 1s present. It is imperative that the
objective function (or utility function in the context of
economics) must be valid under conditions of uncertainty and
risk. The von Neumann-Morgenstern (vN-M) utility is such a
valuc measure. Built upon the notion of von Neumann-
Morgenstern lottery and six rigorous axioms (von Neumann,
1953), the normative framework for decision making under risk
icads to a simple but profound result -- the so-called expected
ntility theorem: “The utility of a lottery is the sum of the utilities
of all possible outcomes of the lottery weighted by their
probabilities of occurrence.” It follows that the preferred choice
‘rom among a sct of risky options is the option with the highest
expected utility. In the case of optimization, the axioms of vN-
M utility should be adhered to and the objective function should
cntail the assignment of a vN-M utility to each design
«lternative under consideration.

Characteristics of DBD Framework

The normative framework of decision-based design
implements the concept of rational decisions. It facihitates vN-M
utility as a measure of value against which design alternatives
can be compared and optimal designs sought.
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Figure 1. Decision-Based Design Framework (Hazelrigg, 1996b)



The DBD framework may view the objective of systems
design as one of maximizing profit. Profit, which is also referred
to as net revenue (NVR), is revenuc generated by the product less
all costs gencrated by the product. Revenue is the sum of
products sold times their prices, in other words, it can be
calculated as the product of the demand g and the price P at
which the product is sold. Costs are the sum of things bought
multiplied by their prices. Total cost Cr consists of: cost of

manufacture, and all other life cycle costs such as costs of
research, design, maintenance and repair and much more. The
calculation of net revenue (NR) can be summarized as Eq. (1):

AR =P 4-Cy (1)

To account for the time value of money since revenues and
costs are spread over periods of time, a better index for profit
would be the present value of net revenue (PNR) which can be
obtained from properly discounting net revenue (NR) to the
present and integrating it over time.

Recognizing most products are designed to make money, a
valid objective function for optimization or decision making
under uncertainty and risk can be established according to the
rule of rational decisions: in the process of decision-based
design, the optimizer should seck to maximize the expected vN-
M utility of the profit., or net revenue (NR).

The axioms of vN-M utility dictates that utilities are not
arbitrarily selected. Rather, utilities must provide proper rank
ordering of design alternatives in the case of vN-M lottery. In
non-deterministic optimization where uncertainty and risk
cannot be neglected, the decision maker’s risk preference
towards moncy must be taken into consideration. In general, the
risk preference of the decision maker towards moncy leads to a
utility of money that has diminishing marginal value (Bernoulli,
1738). Thus profit or net revenue (NR) itself is not a valid utility
under such circumstances.

MULTIDISCIPLINARY ENTERPRISE MODEL

Design is inherently a multidisciplinary process. Traditionally
multidisciplinary design has focused on disciplines within the
field of enginecring analysis, such as aerodynamics, solid
mechanics, kinematics, control, and many others. In the
approach of decision-based design, engineers arc compelled to
look at the design from a broader viewpoint. Indeed, decision-
based design encompasses not only the engineering disciplines
but also business disciplines including cconomics, marketing,
operation research and more. In addition to aiming at improving
the performance of a design, engincers must be aware of the
substantial impact of non-engineering disciplines on the goal of
design. Effective communications between engincers and
experts in the business field are vital to produce successful
designs.

The DBD framework of Hazelngg (1996, 1998) combines
both engineering and business performance simulations in a
single level all-at-once optimization approach. In the current
research the Hazelrigg framework (Fig. 1) has been
Jdecomposed into the multidisciplinary enterprise model shown
in Fig. 2. The decomposed system consists of two major
:lements:  the enginecering disciplines and the business
discipline. The work in engineering disciplines focuses on
oredicting the performance of the product for different design
configurations, as well as satisfying performance targets set in
the business discipline (i.e., management). The role of the
business discipline centers on providing targets for performance
improvements in order to yicld higher profit. These two
organizations are coupled through attributes a, total cost Crand

demand ¢.

Attributes a refer to the performances of a product. These
performances directly influence customer demand. Examples of
attributes  include speed, acceleration, comfort, quality,
reliability, safety, etc. Prediction of attributes a can be obtained
from the engineering disciplines. Such information will be used
as input into the business discipline to estimate the demand g for
the product, which will then be used to determine the profit or
net revenue. In order to compute profit, an estimate of the total
cost Cr is required. Cr is again computed in the engineering
disciplines. Since total cost is influenced by the number of
product manufactured and/or sold, estimation of demand ¢ is
called for to feed back into the engincering disciplines. In this
research it is assumed that the demand for the product, the
amount of the product manufactured and the amount of the
product sold are equal.

The prediction of product attributes @ and total cost Cr is
conducted in the cngincering disciplines. The engincering
disciplines module is partitioned into a module of product
performance and a module of manufacturing cost and life cycle
costs. The set of variables which uniquely defines a specific
design arc referred to as engineering design variables .
Enginecers usually have control over these variables. The
estimation of demand g, net revenue MR and, ultimately, the
expected utility of net revenue, are managed in the business
discipline. The price of the product not only directly affcets the
amount of profit or net revenue (sce Eq. 1), it is also an
important factor driving the demand ¢, which is also affected by
the product attributes a. Mathematically speaking, ¢ can be
modeled as a function of attributes @ and the price, P.

g =4g(a P (2)

Note that price is free to be chosen by the decision maker,
therefore it should be treated as a design variable.

In the context of multidisciplinary design, the term *system
analysis (SA)” is often used to describe the process of
predicting the performance of an engineering artifact using



numerical simulation, which is part of the multidisciplinary
enterprise model investigated in  this rescarch. In fact,
simulation based design tools can be used to assist in the
analyses within the entire multidisciplinary system. Under these
circumstances, the analysis of the cnterprise model is no
different than a “system analysis,” only of a larger scale. The
research results of multidisciplinary design can be readily
applied to the multidisciplinary enterprisc model. Note that the
equations of physical laws involved in the system analysis are
sometimes referred to as “constraints” in the field of decision
science.

The performance predictions obtained from a system analysts
(SA) are referred to as states y in the context of
multidisciplinary design. If we think of the multidisciplinary
enterprise mode! (Fig. 2) as one big SA, then the attributes «,
total cost C; demand g and net revenue NR are components of
the system states. In this paper states y are used to represent the
engineering performance predictions, calculated in the product
performance module of the multidisciplinary enterprise model.
Therefore, not all of the states y are attributes a. Only those
states which influence product demand g will be included in the
set of attributes a. In decision-based collaborative optimization
framework (DBCO), the system level optimization treats
attributes @ as system level design variables xgy, which influence
demand ¢ and scrve as targets for the discipline designers to
satisfy.

Note that vanability exists in the engineering design variables
v and all simulation-based design tools employed in cach
Jiscipline have prediction errors associated with them.

SYSTEM OPTIMIZATION

The multidisciplinary enterprise model discussed above
nclongs to the type of so-called non-hierarchic systems (or
coupled/networked systems). Such systems, usually of fairly
‘arge scale, are characterized by large numbers of design
variables x and parameters p, large numbers of requirements or
constraints g, and a high level of coupling between participating
disciplines which are intrinsically linked to one another.
Coupling results from the information exchange that are
required within the system analysis. This occurs where the
sutput of one discipline is required as input to another discipline
and vice versa. Some of the mathematical terms, defined by
3alling and Sobieszczanski-Sobieski (1994), are briefly
reviewed below and will be used hereinafter.

In a coupled system the design variables x can be
Jdecomposed into the set of shared variables xg, and ng sets of
‘ocal variables x;, where i ranges from 1 to ng, and ny is the
total number of subspaces (or disciplines). The set of shared
variables x,;, contains design variables that are needed by more
than one discipline. The set of local variables x; includes design
-ariables associated with discipline i only. The set of x, and the

iets of x; are mutually exclusive subsets of the set of design
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variables x. The term (xg); is used to represent the shared
design variables that are needed in discipline /.

The set of output from discipline i is denoted by y;. The set of
system states y is composed of all the y;'s in the ng; disciplines.
The term y; is introduced to represent the output from discipline
i which is also uscd as input in another discipline j. Note that y;;
are the subset of coupling variables in the set of y;.

The vector g; contains the design constraints associated with
discipline i. It is assumed that no constraint will stretch over
more than onc discipline. It 1s also assumed that each incquality
constraint has been formulated such that zero is the permissible
value, and the constraint is satisfied when it is greater than or
equal to zero. In conventional design optimization, constraints
can be formulated to guard against system failure or to restrict
the design search to preferred regions of the design space. This
second class of constraint, related to design preference is not
used in the decision-based collaborative optimization
framework developed in this research. In this research preferred
regions of the design space are imposed implicitly through the
demand function.

Collaborative Optimization (CO)

The Collaborative Optimization (CO) strategy was first
proposed by Kroo, et al. (1994) and Balling and
Sobieszczanski-Sobieski (1994). The CO strategy has been
successfully applied to a number of different design problems
including the design of a single-stage-to-orbit launch vehicle
(Braun, et. al, {996b). Tappeta and Renaud (1997) extended this
approach and developed three different formulations to provide
for multiobjective optimization of non-hicrarchic systems.

Collaborative Optimization (CO) is a two level optimization
method specifically created for large-scale distributed-analysis
applications. The basic architecture  of collaborative
optimization (Braun, ct. al, 1996a) is shown in Fig. 3. The CO
framework facilitates concurrent design at the discipline design
level. To achieve the concurrency in the subspace level,
auxiliary design variables (x,,..); are introduced as additional
design variables to replace the coupling variables y;; so that the
analyses in disciplines i and j can be exccuted concurrently.
Compatibility constraints (or discrepancy functions)  are added
to ensure consistency such that (x,,);=y; Compatibility
constraints are usually in the form of cquality constraints.

The system level optimizer attempts to minimize a system
level objective function F while satisfying all the compatibility
constraints d. System level design variables x,,, consist of not
only the shared variables x;, but also the auxiliary x,,,
variables. These variables arc specified by the system level
optimizer and arc sent down to subspaces as targets to be
matched. Each subspace, as a local optimizer, operates on its
own set of design vanables v ; with the goal of matching target
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values posed by the system level as well as satisfying local
constraints g;. The matching can be attained by minimizing the
discrepancy d; between some of the local design variables and/
ar local states and their corresponding target values, in other
words, the objective functions at subspace level are identical to
the system level (compatibility) constraints. This formulation
allows the use of post-optimal sensitivities calculated at the
subspace optimum to be used as the gradients of the system
level constraints. This important feature improves the overall
cfficiency of CO by eliminating the need to exccute subspace
analysis for the sole purpose of calculating system constraint
aradients by finite differencing.

DECISON-BASED COLLABORATIVE OPTIMIZATION

Decision-Based CO (DBCO) Framework

In the decision-based collaborative optimization (DBCO)
framework developed in this research, the multidisciplinary
enterprise model (Fig. 2) is decomposed along analysis
boundarics into scveral subsystems. The method of
collaborative optimization (CO) is used to determine the
optimal design of this complicated model, where an optimizer is
integrated within cach subsystem or discipline. The resulting
decision-based collaborative optimization (DBCO) framework
rigorously simulates the existing relationship between business
and engineering in multidisciplinary systems design as shown in
Fig. 4. A brief discussion about this framework is given below.

System Level Optimization

In the decision-based collaborative optimization framework,
the business deccisions are made at the system level. As
discussed before, the goal of decision-based design optimization
is to maximize the expected utility of net revenue (E(u(NR))) of
the engineering artifact being designed. The system level
optimizer in the decision-based collaborative optimization
framework attempts to increase expected utility of net revenue
while satisfying compatibility constraints d. According to the



analyses in the business disciplinc and the subspace
optimization results, the system level optimizer determines
price P and establishes a sct of performance targets for shared
design variables x,, and auxiliary design variables x,,,
including demand g and total cost C: Attributes a arc treated as

auxiliary design variables which influence demand. Note that
demand ¢ and total cost Cy are also among the auxiliary
variables. Also note that since the design variable price P is only
needed in the business discipline, it is not a target for any
subspace.

The business discipline is operated on directly by the system
level optimizer. It is not further decomposed into demand and
utility of profit subspaces. The reasons why the busincss
discipline is dealt with in this manner are as follows: First of all,
there is no two-way coupling between the analysis in the
demand subspace and the utility of profit subspace. The demand
q is fed forward into the Profit subspace. Secondly, the analyses
involved in this discipline are relatively simple and
straightforward (Egs. (1) and (2)). Consequently it is relatively
casy to obtain sensitivity information with respect to the profit
(or net revenuc) or the utility of net revenue. In the cases where
an analytical demand model and an analytical utility model arc
supplied, the sensitivity information is readily acquired through
the application of the chain rule.

The system level optimization problem in its standard form is
given in Eq. (3).

Minimizoe: F = —E(u(NR))

Wt xg

Subjectto:  d, =0 i=12 ..n,
(XS_V.Y)"“” < x‘l.&' - (XS} \')"llll

o _ o
xsyx - ('\sh' xuu,r)

P>0 )
Note that maximizing the expected utility E(u(NR)) is
cquivalent to minimizing its negative value. Note also that net
revenue (NR) is determined by the systcm level design variable

¥gys and price P. Since system design variables x, are posed as

targets to the subspaces, the term x;,  is used in Eq. (3) so that

sys§
they can be distinguished from subspace design variables in the
subproblem formulations. The term d; refers to the optimal

value of the discrepancy function d; obtained by the
subproblems. The formulation of d; is discussed in the next
scction.

Subspace Level Optimization

The subspace optimizer seeks to satisfy the targets sent down
by the system level optimizer and reports the discrepancy d;

hack to the system level. Meanwhile the subspace optimizers
are subject to local design constraints g, In the field of
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engineering design, the design constraints normally guard
against failure or restrict the search to preferred region of the
design space. One cxample of failure-related constraints is to
require that “‘the axial load in a beam not exceed its buckling
load”. The statement that “the mass of the beam should be less
than 7 kg” is an cxample of constraints based on preference. The
use of constraints to restrict the search to preferred region of
design space is not recommended in decision-based design
approach. Firstly, to impose a preferred space, the engineer must
decide and quantify what level of behavior is unacceptable or
undesirable (i.e., not preferable). This is a matter of decision-
making and by imposing constraints of preferences, the designer
is removing some degrecs of freedom in the design process. The
resulting system optimization may fail to identify the design
with the best trade-off, especially when this constraint is active
or near active at the optimal solution. In the example of the
beam, a beam of mass greater than 7 kg is said to be
unacceptable. But it is possible that a beam of 7.1 kg can
support a much higher load than a beam of 7kg. If the goal of
the optimization is to find a light beam that can support a large
load, the beam of 7.1kg might be a better design. Yet if a
constraint is set to ensure the mass of the beam to be no greater
than 7 kg, the optimizer will not locate the beam of 7.1kg, even
though it may be more preferred.

Upon closer examination, undesirable behaviors (i.e., non-
preferred region) are often undesirable because such behaviors
lead to a decrease in the demand of the product and/or an
increase in the cost of the product, which in the end, results in a
decrease of profit. In DBD the market place is used to determine
preferred region of the design space through demand and cost
models, and therefore constraints related to undesirability or
preference are eliminated. Therefore the local constraints in the
decision-based collaborative optimization (DBCO) framecwork
tend to be thosc constraints that guard against system failure.
Other traditional engincering constraints related to consumer
preference are climinated from the subspace optimization and
are instead incorporated in the demand model and/or cost
model.

The subspace optimization problem for discipline | of Fig. 4
in its standard form is given below:

Minimize: , o . .2
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4)

The subspace must satisfy local constraints g; while attempting

10 minimize discrepancies in system level targets. Note that
attribute targets arc imposed in the second and the third terms of
the discrepancy function.

System Level Constraints Gradient

The gradient of system level constraints plays an important
role in forming scarch directions for the system level
aptimization. As mentioned earlier, one important feature of CO
i5 that post-optimality sensitivity analysis from the converged
subspace optimization problem can be used to provide system
icvel derivatives for compatibility constraints (Kroo ct. al,
1994). As a result, both computational expense and numerical
crror are reduced. This is possible because the system level
esign variables are treated as paramecters (i.c., targets) in the
subproblems. Note that for a certain discipline i, depending on
the contributing analysis involved, not all the system level

are necessarily posed as targets to be

Jdesign variables Xy

referred to as

matched. It is possible that only a subset of Xoes

1Xg,0),, 18 sent down as subspace i targets. Generally all the

subsets for ng subspaces are not mutually exclusive, i.e., their

mtersections exist. The set of system level design vanables x_,

is the union of all the subsets (x . The gradient of system

sys ) i

level constraint o, with respect to the subset (x,

), of the
system level design variables sent down as targets to discipline /

15 given below in Eq. (5). The gradient of system level constraint

7. with respect to those system level design variables which are
not imposed as targets for discipline i is apparently zero.

-

— _2(("’.{.\‘)[_('\"“'\'):] (5)

o

J ( '\’.\‘y s )1

The term (x,), refers to the vector formed by the converged
sptimal values of local variables and states in discipline 7 at the
2nd of subspace optimization. The clements in (x ), are the

aptimal counterparts of the system Ievel targets (x.), .

Test Problem

A preliminary application of the decision-bascd collaborative
optimization framework has been tested on an Aircraft Concept
Sizing (ACS) problem. This problem was originally developed
by the MDO research group at the University of Notrc Dame
:Wujek, Renaud, Batill, et. al., 1996). It involves the preliminary
sizing of a general aviation aircraft subject 1o certain
performance constraints. The design variables in this problem
are comprised of variables relating to the geometry of the
rircraft, propulsion and acrodynamic characteristics, and flight
regime. Appropriate bounds are placed on all design variables.



The problem also includes a number of parameters which are
fixed during the design process to represent constraints on
mission requirements, available technologies, and aircraft class
regulations.

The original problem has ten design variables and five
parameters. The design of the system is decomposed into six
contributing analyses. This problem has been modified by
Tappeta (1996) to fit the framework of multiobjective coupled
MDO systems. It is further modified in this research to be
suitable for the case of decision-based design (DBD). For
comparison, the rest of this section gives a brief description of
the modified ACS problem by Tappeta. It will be referred to as
the ACS problem from hercon. The DBD version of the ACS
problem will be discussed in the following sections.

The Aircraft Concept Sizing (ACS) problem has three
disciplines (sce Fig. 5): acrodynamics (CA1), weight (CA2) and
performance (CA3). It can be observed from the dependency
diagram that the system has two feed-forwards and there are no
feed-backs between disciplines. Table 1 lists the design
variables and their bounds in the ACS problem. Table 2 lists the
usage of design variables as inputs to each discipline. It can be
seen that there are five shared design variables (x; ~ x4 and x7).
Table 3 lists the parameters and their values. Table 4 lists the
state variables and their relations with each discipline. Clearly
there are two coupled states (y, and y4). Table 5 contains all the
relevant information for the ACS problem in the standard MDO
standard notation introduced earlier.

-

Table 1: List of Design Variables in ACS Problem

Name (Unit) L U
x1 | aspect ratio of the wing 5 9
X2 | wing area (ft?y 100 300
x3 | fuselage length (ft) 20 30
x4 | fuselage diameter (ft) 4 5
X5 | density of air at cruise altitude (slugs/ft®) |.0017 |.002378
xg | cruise speed (ft/sec) 200 300
x7 1 fuel weight (1bs) 100 2000

Table 2: Input Design Variables of Each Discipline in ACS’

CAl (Aero.) CA2 (Weight) CA3 (Perf))
Xy ) )
X3 '\] \J
x4 v v
Xs N
X4 )
x7 v ¥

*Shaded cells in the table indicate shared variables.

1
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X~ Xg D
1 4
oot Yz
i Lift/Drag |
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Performance — —= — — — — 1

Figure 5. Aircraft

Concept Sizing Problem



Table 3: List of Parameters in ACS Problem Table 5: Design Vectors and Functions for ACS Problem

Name Description Value Vector or Function Variables or Content
P1 | Npass | number of passengers 2 x [x1, x2, X3, x4, X5, X6, X7]
P2 | Nen number of engines 1 Xy, [x}, x3, X3, x4, x7]
P3| Wen | engine weight 197 (Ibs) Xgun goals for y,, yu
w ayload weight 398 (lbs
P4 pay | Pay g (Ibs) X_(‘),},_‘. [x?, X(z)- ng 12, Xg, }’;, .VZ]
Ps | Nauie | ultimate load factor 5.7
F F=y,
Pe | Eta propeller efficicncy 85
system targets to o o 0 0 o o
prlc specific fuel consumption 4495 (1bs/hr/hp) be matched (Xgpe)) = DX X X3 X4, 3]
pg| Ci,, | maximum lift coeff. of the wing 1.7 X empty sct
(xgni [x1s x2, %3, x4]
Table 4: Lists of States in ACS Problem’ Al Fa)1 empty set
Name (Unit) Output From |  Input To Yssl b1, x2, x5, x4
Y1 | total aircraft wetted area (ft%) CAl 81 empty set
¥y | max lift to drag ratio CAl CA3 analysis Wy y2]l = CAllxy, x5, x5, x,]
¥3 | empty weight (Ibs) CA2 optimal target T I
P values (xsx)l - [X], X2 X3 Xg yz]
¥4 | gross take-off weight (1bs) CA2 CA3
system targets to o o 0 0 0 0 o
¥s | aircraft range (miles) CA3 be matched (Xgpsda = [x]s X9, X3, Xy, X9, ¥4]
¥6 | stall speed (ft/sec) CA3 x> [xs, xg]
*Shaded cells in the table indicate coupling states (Xsn)2 [xy, X9, x3, x4, 7]
(€ P! empty set

The objective in the ACS problem is to determine the least

gross take-off weight within the bounded design space subject CA2 Xiw2 [xys x2, ¥3, X4, X5, X6, X7]

to two performance constraints. The first constraint is that the

: . . &2 empty set
aircraft range must be no less than a prescribed requirement,

lyvs. 4] =

and the sccond constraint is that the stall speed must be no
CAZ[.\'l, X5, X3, Xy, X5, Xg, xq]

. . analysis
greater than a specified maximum stall speed. In standard form,

the optimization problem is given below: optimal target e e e e e
o . values () =[x X0 X3 Xg0 X9 ]
Minimize: F = Weight = y,
‘ system targets to x° ) (82232 40
! X = | Xq, X9, ¥y, ¥
Subject to: g, =1- 7 8 >y be matched sys3 2% Y2
stall,,, X3 empty set
Range
g = 1- ‘—’eq 20 ()3 [x2, x7]
¥s
i (X ) V2. ¥
Vien =70 ftscc CA3 w3 2. 4]
stall,,
) . X, [x9, X9, 39, ¥
Rungcruq = 560 miles 3 277 "
(6) £ &1 &l
analysis {)'5v )"6] = CA}[XZ,—\'% )'2,)'4]

optimal target

- - - - -
values (g3 = (3 %552, 4l




Demand Model and Cost Model

The approach of decision-based design requires engineers to
not only focus on the product performance but also life-cycle
costs as well as demand and the profit obtained over the life-
cycle of the product. Thus it is very important to construct a
proper demand model and a proper cost model for the product.
The authors are aware that the task to build such models is not
an easy one, and engineers are generally not trained for this
task. Since this research is concentrated on the optimization
aspect of decision-based design, it is reasonable to assume that
other discipline experts have developed such demand and cost
models and made them available to the optimizer.

In the case of the Aircraft Concept Sizing (ACS) problem,
neither a demand model nor a cost model was available from the
previous studies. In order to apply the decision-based
collaborative optimization framework of Fig. 4, a demand
model and a cost model have been developed. These models are
built in a way such that they agree with industry trends for this
specific class of aircraft and that they lead to rcasonable
optimization behavior. Although they are by no means
complete, they serve fairly well as concept models for the
application of DBCO at the current stage. Figurc 6 illustrates
the demand and cost models of the ACS problem. Only the
annual demand, annual cost and annual profit are considered in
the current research.

Demand Model

The first step in building the demand model is to identity the
attributes that influence the demand g of this aircraft. The
conventional optimization ACS problem (Eq. (6)) tries to
minimize gross take-off weight (y4) while satisfying two
nerformance constraints, one on stall speed (vg) and the other on
aircraft range (yg). Closer examination reveals that the objective
‘unction and two constraints, imposed in the onginal problem,
are based on the designer’s estimate of customer preference for
w~eight, stall speed and range. In the decision-based design
approach, it is more appropriate to treat these quantities (take-
off weight y,, aircraft range ys, and stall speed yg) as attributes of
{emand. Hence there are no performance constraints in the
DBD version of the ACS problem, and the goal of the
optimization is to maximize profit.

It is also assumed that customers are interested in the cruisc
ipeed (x,) of the aircraft as well as how much room they would
have on the airplane. A new state variable, fuselage volume (y4),
‘s introduced to reflect the concemn for passenger room on the
aircraft. In all, there are five attributes of demand in the DBD
version of ACS problem: take-off weight y,, aircraft range ys,
:tall speed yg, fuselage volume y;, and cruise speed v, Note that
Jdemand is also influenced by price P.

The demand model developed is a muitiplicative modcl:

eoefl of demand for Rangs
k)

°
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Figure 6. Concept Demand Model and Concept Model
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q = ‘7(“- P) = qB( H C:’)Cpnce

=1

where a = {yg Vs Vg Y1 X6} (7
n, =5
gy = 1200

The term gg represents a baseline demand, which is set to 1200.
The number of attributes is denoted by n,. The affect of cach
attribute on the final demand is reflected by the demand
coefficient ¢;. Similarly the term cp,, denotes the demand

coefficient of price £ The final demand ¢ is the product of all
demand coefficients and the bascline demand g.

Demand coefficients for ecach attributc and price arc
developed by financial analysts and marketing personnel within
the business discipline and vary with time. For the purpose of
this study, they are assumed fixed with respect to time and are
given in Fig. 6. The curves in Fig. 6 plot the coefficient of
demand on the ordinate and the corresponding attribute (or
price) on the abscissa.

1. gross take-off weight ()
The lower the take-off weight, the higher the demand; but
an aircraft with a very light weight is not desired.

2. aircraft range (ys)
The longer the aircraft range, the higher the demand; but
after the range reaches more than 600 miles, therc 1s no sig-
nificant increase in demand when range increases.
This formulation is not unlike the original performance
constraint g, (Eq. (6)), where the coefficient is set to 1

when aircraft range equals to 560 milcs.

3. stall speed (v¢)
The lower the stall speed, the higher the demand; but a
near-zero stall speed is not necessary.
This formulation is not unlike the original performance
constraint g; (Eq. (6)), where the cocfficient is set to |

when stall speed cquals to 70 ft/sec.

4. fuselage volume (y4)
The larger the fuselage volume, the higher the demand.

5. cruise speed (xg)
The faster the cruise speed, the higher the demand.

6. price (P)
The lower the price, the higher the demand; if the aircraft is
sold for free (P=0), the demand approaches infinity.

Cost Model

It is assumed that all costs (Cy) related to the production of
the aircraft can be divided into two categories: fixed cost Cp-and
variable cost Cj (Krajewski and Ritzman, 1999). The fixed cost

"1 is the part of the total cost Cr that remains consistent

regardless of changes in the amount of product produced, for
cxample, the annual cost of renting or buying equipment or
facilities. The variable cost Cy is the portion of the total cost Cr
rhat varies directly with quantity of product produced, such as
cost per unit for material and labor. If we assume the quantity of
product produced and sold per year is equal to the demand ¢ for
the product per year, the total cost Cyper year is:

Cr = Cp+qCy, (8)

It is assumed that the variable cost Cp in the ACS problem is
Jependent on five of the seven design variables including wing
area (x;), fuselage length (x3), fuselage diameter (x,), cruise
speed (x4) and fuel weight (x;). A variable cost parameter (p ),
15 assigned to each cost-related variable to represent the portion
of variable cost (per unit) associated with each variable. The
otal variable cost per unit is the sum of all variable cost
narameters:

N oss

Cp = % (py); ®)

i=1

where ., is the number of cost-related variables. The
suideline for assigning variable cost parameters is: the larger the
variable, the higher the cost. The curves in Fig. 6, associated
with cach cost-related variable, plot the variable cost parameter
runit: 10,000 dollars) on the ordinate and the corresponding
sost-related variable on the abscissa. The step jumps in the
curves represents the need to purchase (or rent) and/or install
new equipment (or facilities) when the size of the aircraft
cxceeds existing production capabilities.

Substituting Eq. (9) into (8), the model of the total cost Cris:

Aot

Cr = Cp+a X (p), (10)

i=1

and the unit cost C, can be obtained by dividing both sides of
iq. (10) by demand g:

c =Sy i
u —q— z (pl"), ( )

i=1

Note that the number of product produced (g) may have a
Jiscounting effect on the variable cost parameters p;: For
‘nstance, usually the cost per unit for material will decrease
when the total amount of material bought increases. Thus a ¢-
discounting option has been included in the determination of
variable cost parameter in the cost model.



Note

The demand and cost models developed in this paper are by
no means complcte. They are conceptual and rather simplistic.
Future work on the modification of these models will include
(and not limit to) the following issues:

1. gross take-off weight (v4)
It has been pointed out to the authors that to a customer
higher gross weight is actually desirable because it Icads to
longer aircraft range. Meanwhile higher gross weight leads
to higher manufacture cost. Therefore a modified demand
model would include the gross take-off weight as a slightly
favorable feature (i.c., the higher the take-off weight, the
higher the demand). On the other hand a modificd cost
model may include the gross take-off weight as a strongly
negative factor (i.e., the higher the take-off weight, the
higher the cost).

2. aspect ratio of the wing (x|)
Increasing aspect ratio will increase the wing structural
weight, which will in turn lead to an increase in the aircrafl
gross take-off weight, thus add to the total cost. A modificd
cost model would include aspect ratio as another negative
factor.

3. price(P)
It has becn brought to the authors’ attention that in the real
world, due to the maintenance requircments such as insur-
ance and hanger, the demand will not approach infinity if
the aircraft is given out for free. A modified demand model
will address this issue by assigning a definite number to the
demand coefficient for price when price is set to zero. This
definite number will be associated with the maximum
demand possible for this aircraft.

DBCO Formulation

The decision-based collaborative optimization framework has
been applied to the DBD version of the Aircraft Concept Sizing
(ACS) problem. This application is a prcliminary study, and
focuses on the collaborative optimization feature of the DBCO
framework. The issues of propagated uncertainty are neglected
in this study. The utility of profit is assumed to be the profit
itself. Hence the objective of the resulting deterministic
optimization is to maximize profit (or net revenuc). During the
optimization, the demand g is treated as a continuous variable,
rather than an intcger. At the end of the system optimization, g
is rounded to the nearest integer.

Two additional disciplines are added in the DBD version of
the ACS problem: cost (CAc) and business (CAb). Price P is a
new design variable and a new state variable (fusclage volume
y4) is introduced. Table 6 provides the list of input design
variables to cach discipline in the DBD version of ACS
problem. Clearly design variable xg (cruisc speed) enters the set

of shared variables. Table 7 lists the states y, demand g, total

cost Cp, and net revenue NR. It also depicts how they are related

o each discipline. The sect of coupling variables expands to
include five additional members: 5 (aircraft range), v (stall
s;peed), y7 (fusclage volume), ¢ (demand) and Cy (total cost).
Table 8 contains all the design vector information for the DBD
version of subspaces 1 (aerodynamics), 2 (weight), 3
tperformance) and ¢ (cost) of the ACS problem in MDO
standard notation. Table 9 contains the design vector
information of subspace b (business) since it is operated directly
»y the system level optimizer. The difference between the DBD
version of ACS problem and the modified ACS problem by
Tappeta (1996) can be clearly observed by comparing Tablcs 6,
7, 8 and 9 with Tables 2, 4 and 5, respectively.

Table 6: Input Design Variables to Each Discipline in ACS
(DBD version)’

CAl CA2 CA3 CAc CAb
(Aero.) (Weight) (Perf) (Cost) (Busin.)
o J J
X3 v v v
o N
x4 v \)
- N
e J N
x7 v v
P N

*Shaded cells indicate shared variables.

Table 7: Lists of States in ACS Problem (DBD version)’

Output From Input To

Y1 CAl

Y2 CAl CA3
3 CA2

Y4 CA2 CA3, CAb
¥s CA3 CAb
Yo CA3 CADb
¥7 CAl CADb
q CAb CAc
Cr CAc CAb
NR CAb

*Shaded calls indicate coupling states.



Table 8: Design Vectors for ACS Problem
(DBD version)

Vector or Function

Variables or Content

x [.\’1,,\'2,X3,X4, X5, Xgs X7, P]
Xsh [x1, X2, X3, X4, X6, X7]
Xaux goals for y9, y4, ys. ¥ ¥7. C1 q
o o 0o 0o o0 o
o [x}, x5, X3, X4, Xg, X7,
x.\'ys 0 0 0o o o0 0 0
Yo Vg Vs Vg Voo CT’ q ]
F =-NR
system targets 10 0 _ 0 0 o 0o 0 o
be matched (X”W)l = [Xp Xq, X3, Xgs Vs )’7]
X, cmpty set
xsnh [x1, X2, X3, X4
(Xquh empty set
CAl
x.\l\'] [Xl) X7, X:h X4]
2 empty set
analysis [y, ¥ ¥71 = CAllxy, x5, x5, x4]
optimal target L N S
values (x40 =[xy x X3, Xg0 Yoo vq)
system targets to 0 _ 0 0 0 0 0 o0 o0
be matched (egpdy = Log a0 05, X0 06 09, 1]
.\'2 [.\’5]
(X_y,,)z [.7(] s X25 X3, X4y X6 .\'7]
(X )2 empty sct
CA2 X [x1. x2, X3, X4, X5, X6, X7]
o cmpty set
. [y v4) =
analysis T
CA2[xl‘ Xg, X3, Xy, Xs, Xg, x7]
optimal target I T T
values (X530y = 13 X9, X3, Xy, Xe, X7 4]
system targets to o o 0 0 0 0 o
be matched (X503 = (X3, X9 ¥2. ¥4 V50 Vel
X3 cmpty sct
(X5n)3 [¥2. 7]
(xulu )3 [.]"'2' .1'4]
CA3
X3 [XZ’XW )'2*.}’4]
&3 empty set
analysis [ys. 36l = CA3x,, x4, v5, ¥4

optimal target
values

* - -

L - - L
(x“-)_‘; = [XZ' Xy Vo Vg Vs ,V()]

Table 8: Design Vectors for ACS Problem
(DBD version) (Continued)

system targets to o 6o 0 0 o 0 0 .0
be matched (egyde = (X 3 x4 X6, X7, Cr
X empty sct
(xgp)c [xq, x3, X4, Xg, X79]
(Xaux)e (9]
CAc Xgge [x5, x3, x4, X, X7, q]
8¢ empty set
analysis Cr = CAclxy, x3, x4, X6, X7, 9]
optimal target . « e e e e ek
values (X)L X3 ¥y X X3 C ]

Table 9: Design Vectors in the subspace b (business)
for ACS Problem (DBD version)

targets sent down o C [ O L0 L0 10 0 o0
to other subspaces (xy5)s = [xe Yo Vs e ¥4 Cr)
Xy (P]
Cesndb [xe]
CAb (xaul')b [yd! ¥s: ¥6, V7, CT]
Xssb {,\'2, yz, _\"5). yz, }? C;, P]
4N empty set
: (¢", NR] =
analysis 6 0 6 o o .o
CAblxg y4 Vs Ye ¥9 Cro P

The system level optimization problem, for this application,
1 its standard form is detailed in Eq. (12).

System Level Optimization

Minimize: Fo=

. o

w.r.t. x_(_\,x

Subject to: d, =
dy =
dy =
d. =

(o]

here °
where Xyvs

07
qg =

NR

14

= P-qO—CTO

-NR

0

0 o
(’\s_\'v)mm < X.sys S ('\.s'ys )mu,l

B o o o o0 o0 0
=[xy, Xy, X3, X4, Xg, X7,

0 Q o 0
vo % CRP]

0 O
Vo Vg Vs

- o 8 o 0o Q
A( Vg Vs Yo ¥ Xgo P)

(12)




Note that the system level optimizer calls the business discipline

directly to obtain demand ¢° and the system level objective NR.
There arc thirteen system level design variables and four
compatibility constraints that are evaluated in subspace 1, 2, 3
and c.

The subspace optimization problems for each discipline in
their standard forms are given by Eqgs. (13) ~ (16).

Subspace 1 (Aerodynamics) Optimization

Minimize: 0.2 0.2
w.rt x d; = (x;—-x]) +(x3-x;)
2 2
(o] 0
F{xy-x) Flxg-xy)
2 2
o, < (o)
+{¥y, —,"3) (- _"7)
Subject to: (X 551D pin S Xsst S (X 0q), 00
where X =[xy, xp, %3, 041
[y, Yy, vo] = CAl[x), x5, x5, x,4]
P2 1* 2243 24 (] 3)
Subspace 2 (Weight) Optimtzation
Minimize: 0.2 0.2
Wt X o dy = (x|~ x|) +(x3-Xxy)
o 2 o 2
+(x3-x3) (x4~ x4)
2 2
] o
T (xg—Xg) +(x9-x7)
2
0.2
T (ys-yy)
Subject to: (xx_\z)m”l $x,,< (x.‘__\z)mu_r
where Xoo =[xy %y, X3, Xg, X5y Xg, x7]
[_ij )’4] = CAZ[-"]‘ Xy X3y X gy Xg, X, X7](14)
Subspace 3 (Performance) Optimization
Minimize: 0.2 0.2
Wt X 3 d3 = (x-xy) +Hlx;-xy)
5 2 2
oy, - )'(3) t{yy- _v;')
O 2 0 2
Py rs) ey
Subject to: (X3 )mm a3 S (X3 Dot
where X3 = (X5, x5, v, ¥4l
[ye vyl = CA3x,, x5, vy, V4]
06 2 MY (15)

Subspace ¢ (Cost) Optimization

Minimize:

wortox d. = (x3-x3) *+(x5-x3)
0,2 0,2
+lxg—xg) F(xg-xg)
2
o
+(x7—x7)
2 2
o o
+t(g-q) +(Cr-Cp)
Subject to: (xs_y(‘)m,'n SX S (xx.fc')ma.r
where Xese © [x2'x3’x4'x6‘ .\’7,(]]

Cr = CAclx,, x3, x4, X6, X7, q]

(16)

Note that other than variable bounds, there are no local

constraints for the subspace optimization problems.

Optimization Results & Discussion

A Sequential Quadratic Programming (SQP) method was
ased for optimization in both the system level and the subspace
optimization. The SQP solver, fmincon, was obtained from the
Matlab Optimization Toolbox. The program converged to an
optimum after thirty-seven system level iterations. The optimal
solution is listed in Table 10. Figure 7 shows the system level
optimization history of convergence of the system level
objective function (negative of profit, in subplot 8), the
convergence history of the four compatibility (discrepancy)

*

constraints (d,, d,, dy, and 4,

in subplots 9~12), and the
convergence history of the seven system level design variables

icruise speed xz, aircraft range y(;, stall speed yg, fusclage

volume y3, price P, demand ¢° and total cost Cy, in subplots

i~7). The abscissa of cach subplot is the number of system level
iterations. Note that the value of profit (not the negative of
nrofit) was plotted in subplot 8 for casy reading. For the same

rzason unit cost €. was plotted instead of total cost C; in
subplot 7.

As can be scen from the convergence plots, the system level
~ptimizer tries to minimize both the negative of profit and the
constraint violations simultancously. At the beginning of the
sptimization, the system level optimizer sets targets high for
price, high for the levels of performance (to ensurc high
demand) and low for cost based on the results of the business
nalyses. However these targets conflict with one another and
lecad to a large discrepancy at the subspace level. Thus the
system level optimizer, while trying to keep profit as high as
possible, was forced to lower price, downgrade performance
and tolerate higher cost so that the subspace discrepancy could
be reduced. Gradually the system level optimizer found the best
irade-off among the targets and reached a consistent optimal
design. The optimization history observed in the ACS problem



resembles the existing relationship between business and
engineering in multidisciplinary systems design.

The demand model and the cost model play an important role
in the decision-based design approach. In order to illustrate the
influence of the demand and cost models, a conventional all-at-
once optimization was performed according to the problem
formulation in Eq. (6). The conventional optimum obtained is
also listed in Table 10. Note that fuselage volume (y7) at the
conventional optimum is determined by the optimal fusclage
length (x3) and optimal fusclage diameter (x4). It can be
observed that the conventional optimum outperforms the DBCO
optimal design on lower weight (y3, »4). However it possess
poor characteristics in many aspects such as smaller aircraft
range (ys), higher stall specd (y) and smaller fuselage volume
(7). Such an outcome is no surprise since the main concern of
the conventional ACS problem is to minimize take-off weight,
while the DBD approach takes into account other performance
attributes, because of the DBD objective of maximizing profit.

If we assume that the aircraft configuration at the
conventional optimum design will be sold at the same price as
the DBD optimum design, the demand, cost and profit of the
conventional product can be obtained according to the demand
model (Eq. (7)) and cost model (Eqgs. (10) and (11)) developed
earlier. These values are listed in Table 10 in parentheses
because of the assumption. Notice that the unit cost of
conventional optimal design 1s lower than the unit cost of the
DBD optimal design. However the poor performance attributes
cause the demand for conventional optimal design to be much
lower than the DBD optimal design. Hence the DBD optimal
design leads to higher profit.

6 (ft/sec)

x6° (ft/scc) y50 (miles)

Table 10: Optimal Solutions for ACS Problem
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t 1
260 % aooo |,
\ 100
ol M\r\__
(70) p1—
220 \‘W 1600 "'1
200 (s60) [ "7 " S
o 19 37 o 19 a7z o 19 37
<. fit () -
[unit cost] proft a1
T
3eB } N 2e8 0.25
T
il fl'\-——- 1.8e8 0.2 * @
2e5 ': he o.15
@ ey on |
1es :E o.5e8 [ t
X X o.05 }\
of - o T - o _h&-.-—-._—-
o 19 a7 o 18 a7z o 19 a7

Name (Unit) DV DBCO | Conven.
Bounds | Optimum | Optimum
X1 | aspect ratio of the wing 5~9 7.968 5
X2 | wing arca (ft?) 100~300 2303 176.53
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CONCLUSIONS

In this rescarch a Decision-Based Collaborative Optimization
(DBCO) framework which incorporates the concepts of
normative decision-based design (DBD) and the strategies of
Collaborative Optimization (CO) has been developed. This bi-
level  non-deterministic  optimization framework more
accurately captures the existing relationship between business
and engineering in multidisciplinary systems design. The
business decisions arc made at the system level, which result in
a sct of engineering performance targets that disciplinary
engineering design teams seek to satisfy as part of subspace
optimizations. The  objective of the Decision-Based
Collaborative  Optimization (DBCO) is to maximize the
expected von Neuman-Morgenstern (vN-M) utility of the profit
or net revenue (NR) of a product.

A preliminary application of this approach (deterministic
case) has been conducted on a multidisciplinary test problem
named the Aircraft Concept Sizing (ACS) test problem.
Conceptual demand and cost models have been developed. The
corresponding optimization results are discussed and compared
with the conventional optimization solutions.

Future work is being targeted towards a non-deterministic
implementation of the DBCO framework in which the issucs of
propagated uncertainty in such a bi-level optimization
framework will be addressed (Gu and Renaud, 2001). A
conceptual utility model for the net revenue (NR) will be
adapted from the litcrature in the ficld of decision-basced design
(DBD). The conceptual demand and cost modcls developed in
this paper will be modified to better reflect the real world.
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